
J .  Fluid Mech. (1967), vol. 29, part 2, pp. 361-372 

Printed in Great Britain 
361 

A theory of water-bells 
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A theory is developed to determine the shape of water-bells. The motion of the 
gas induced by the moving walls is taken into account in this analysis. A rapidly 
converging iterative procedure leads to a theoretical shape which agrees well with 
the experimental shape of the water-bell. 

1. Introduction 
When a vertical jet of liquid impinges on the centre of a disk, the liquid spreads 

out on the disk and leaves it to form a transparent sheet that may or may not 
close at the bottom. When it closes, it assumes a shape as shown in figure 1, and is 
usually referred to as a water-bell. Clearly, the shape of the water-bell depends 
on the surface tension of the liquid. Indeed Boussinesq (1913) wrote Newton’s 
law, for an element of fluid subjected to gravitational force and surface tension, 
and obtained equations governing the water-bell shape. 

When the shape is determined experimentally, Boussinesq’s equation provides 
a means to determine the surface tension r. Numerous experiments have been 
conducted for this purpose (see references in Wegener & Parlange (1964)). 
However, surface tensions so determined are often much larger than those given 
by other experiments. Wegener & Parlange (1964) showed that if the motion of 
gas inside the bell generated by the liquid sheet is taken into consideration, the 
disagreement with other experiments disappears. In making this comparison, 
Wegener & Parlange (1964) took the experimental bell shape and estimated the 
difference b0 -p(s)] between the outside and inside pressure, induced by the 
gas motion. The surface tension was then computed from the amended 
Boussinesq’s equation 

d 2r c dz 1 dz 
2u- - - [Po -&)I - dt2=-E ds hp, ds’ 

d (s - r sin #I) C =  
r d z  ’ (3) 

where C is the curvature; the meaning of r ,  s, #I, and z is indicated on figure 1; 
h is the water-layer thickness; pw the water density; and subscript 1 designates 
a point of the sheet. The gravity term, 2g(z - zl), is often negligible for small bells 
and high velocities ~(8). h is given in terms of the water flow rate Q = 2nrhw(s). 

A complete theory of water-bells, however, must include a means of computing 
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not only the internal motion of the air trapped within the bell but must also 
include the calculation of the bell shape. Such a theory is presented here. Apart 
from Boussinesq’s original contribution, previous work on water-bells is mostly 
of an experimental nature. In  his study of dynamics of liquid sheets, Taylor (1959) 
gave a theory of water-bells where the air motion inside the cavity is neglected. 
In  his experiments the internal motion of the air is hampered by the presence of 
a large pipe. For such special cases one may be justified in neglecting the air 
motion and the term ,59,,-p(s)] in equation (1) altogether. 

r 
v 
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I ffll Support rod 

J P  

FIGURE 1. Sketch of water-bell and nomenclature. 

2. The boundary value problem 
As the air motion induced inside the water-bell is slow, the air may be regarded 

as incompressible and at a uniform temperature. Let V be the veIocity of the air; 
pa, its density; p ,  the pressure and va the kinematic viscosity. We assume that the 
motion induced is axisymmetric. If $ denotes the stream function, then the 
velocity components (qz, qr) are given by 

For axially symmetric flows the vorticity is in the azimuthal direction. Denoting 
this component of the vorticity by [ we have 
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The equation of motion may be conveniently expressed in terms of E/r by 
eliminating the pressure in the Navier-Stokes equations, thus 

Our problem is to solve the non-linear system of equations (1) to (6) subjected 
to the boundary condition that the velocity of air at the liquid sheet is the same 
as the velocity of the sheet. The location of the liquid sheet is, of course, not 
known a priori; i t  is governed by equation (1) and depends, among other things, 
on the motion of air inside the water-bell through the term b O - p ( s ) ] .  The 
problem is then very complicated, we shall attempt to provide a solution for an 
important limiting case. If D denotes a typical dimension of the water-bell (e.g. 
the maximum width) and V denotes a typical velocity of air at the sheet, the 
Reynold’s number of the flow is DV/v,. In  most cases of practical interest, this 
Reynold’s number is large-of the order of 103-104. This means that the viscous 
effect is totally negligible except in a layer of thickness Gnear the liquid sheet and 
62 = O(Dva/V). A solution of the boundary-value problem will be sought for the 
limiting case of large Reynold’s number. 

3. Batchelor’s theorem 
Batchelor (1956) proved the following theorem: in an axisymmetric flow 

involving closed streamlines the only solution of equation (6) satisfying the 
boundary condition [ / r  = A on a, closed streamline L‘ is, inside L‘, t / r  = A. That 
this is a solution of the problem is evident. Batchelor showed that indeed this is 
the only solution. It is interesting that a very simple proof of Batchelor’s theorem 
may be devised as follows. Let E/r = Y be a second solution of (6), Y = A at the 
boundary. That is 

Let us now define a quantity Z by Z = Y - A, then 

2 satisfies the system 

2 = 0 onL‘. Now, for any Y this system is known to have only one solution 
Z = 0 (Courant & Hilbert 1962). Hence, Y = A.  

Batchelor’s theorem may now be applied to  our problem as follows. In  the 
limit of large Reynold’s number, the viscous effects are dominant in a thin 
boundary layer near the liquid sheet only. Outside this boundary layer, the 
governing equation is well approximated by keeping only the inviscid terms of 

aElr a51r 
ar ax 

equation (6), namely 
qv-- +qz- = 0. (7)  
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This equation indicates that  C/r is constant on each streamline. In  particular, if 
L’ denotes one such streamline along which E/r has the constant value A ,  then 
by Batchelor’s theorem 

everywherein the region 8’ enclosed by L’. We shall take L’ just outside the 
boundary layer. In  this way the non-linear equation (6) may be replaced by the 
simpler equation (8). To be sure, the constant A must still be computed by an 
analysis of the boundary layer. We show in the appendix that A must be chosen 
so that loL r2 ~ 7 v 2  cis = r2v3 cis, (9) l o L  
where V is the velocity of the air at the outer edge of the vortex (outside the 
boundary layer). The integration is carried out on the meridian limiting the 
water-bell. Since the pressure acting on the water-bell in the limit of large 
Reynold’s number, depends only on the inviscid motion inside the bell our 
boundary value problem may be simplified: we must find a solution of (8) 
satisfying the condition @ = 0 at the water-bell and the condition (9), together 
with the amended Boussinesq’s equation. 

4. Iterative solution 
An iterative method of solution of the boundary-value problem may be readily 

devised. We start out with a ‘convenient’ choice of water-bell shape. In  principle, 
we may obtain the solution of (8) satisfying ~ = 0 at the water-bell and condition 
(9), e.g. by the relaxation or other method. We may then calculate the pressure 
distribution on the water-bell by Bernoulli’s equation 

wherepSt denotes the stagnation pressure. pst may be regarded as given since the 
pressure level inside the bell may be adjusted arbitrarily’(e.g. see Taylor 1959). 
With p(s) known, the ordinary non-linear differential equation (1) may be 
integrated numerically. In  this integration we need two conditions from which 
the two integration constants may be determined. These are provided by the 
requirements that the water sheet must leave the tip of the disk in a prescribed 
direction a t  a given velocity. In this way, we compute a corrected bell shape. The 
procedure of calculation may now be repeated. Obviously the convergence of the 
iterative process and total amount of numerical computation needed for the 
calculation depend on the initial choice of the bell shape. If the initial shape is 
close to the final shape, one iteration only will be sufficient. Of course, we do not 
know what the final shape of the water-bell is. However, some indication of 
shape is provided by neglecting the pressure difference, e.g. that determined by 
the original Boussinesq’s equation, or computed by Taylor. The size of the 
initial choice is not important because the pressure correction (see equation (9)) is 
independent of the size when the gravity effect is small (the usual case). 
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5. An example 
The rapidity of convergence of the iterative method will now be illustrated by 

considering an example. We propose to compute the flow field and water-bell 
shape corresponding to Expt. 2 of Goring (1959). The resulting shape may then 
be compared directly with the experiment (dots on figure 2 indicate the shape 
of the water-bell in side view as measured by Goring). The magnitude and 

T (om) 
1 

FIGIJRE 2. Comparison with Expt. 2. 0, experimental points. 
sin = 0.940; wl = 470 cm/sec. 

direction of the water velocity leaving the disk are taken to be the same as those 
in the experiment (vl = 470cm/sec, sin$1 = 0.940). Moreover, we assume 
pSt = p,,, this assumption is reasonable as the bottom of the bell breaks easily 
during the experiment, in that case the stagnation pressure must always remain 
close to the atmospheric pressure. Let us take for initial shape a sphere of radius a. 
In  the first iteration we may neglect the small gravity effect, in which case v is 
constant in (9) and the pressure correction so determined is independent of the 
radius u. For this reason the numerical value of a need not be specified. The 
solution of (8) is Hill’s vortex 

@ = &Ar2[r2 + z2 - uz]. (11) 



366 Jean- Yves Parlange 

Equation (9) is integrated at once to give 

and 

which, of course, is independent of a, v being considered constant in equation (12) 
(no gravity). Using (12), we integrate equation (1) at once (see table l), and obtain 

T o n  0.3 0.6 0-9 1.2 1.5 1.810 

Zlcm 0.073 0.201 0.345 0.525 0.769 1.370 

TABLE 1. Curve 1 

A, = 1077 

TClU 0.3 0.6 0.9 1.2 1.5 1.810 

C*I 0.07 0.32 0.68 1.05 1.26 1.28 

TABLE 2. Pressure correction from curve 1 

Pcm 0-3 0.6 0.9 1.2 1.521 1.542 
Z2 (above 0-072 0.198 0.346 0-553 1.112 1.199 

2, (below 2.236 2.139 1-991 1.791 1.278 1.199 

2 exp. (above 0.072 0.196 0.345 0.558 1.190 - 

2 exp. (below 2.218 2.121 1.972 1.782 1.190 - 

equator) 

equator) 

equator) 

equator) 
TABLE 3. Curve 2 and experimental results 

0 5  

1 

- 108@/A = 0 2 10 

+ 
FIGURE 3. Solution of equation (8) for curve 1, by relaxation method. 
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curve 1 in figure 3 .  We repeat the procedure with curve 1, but now equation ( 8 )  
with condition (9) have to be solved numerically. In  figure 3 we also represent 
a few curves @/A = const., as obtained by the method of relaxation. Then we 
deduce A and C, = (p,,-p)/+pPavE, see table 2. v, is the velocity of the water at 
the equator of curve 1 (we keep the small correction due to  gravity). Integration 
of equation ( 1 )  once more leads to curve 2 in figure 2 ,  see table 3. No experimental 
point is at a distance from curve 2 larger than 1 yo of the bell diameter. Repetition 
of the procedure with curve 2 yields no appreciable change in shape. In  the tables 
only a few representative values are given. Points below the equator are not 
exactly symmetric to those above, the difference is due to the variation of v with 
gravity. 

Two results are apparent from the numerical analyses: our iterative scheme 
converges rapidly; one could, of course, obtain a numerical solution within any 
accuracy with more than two iterations. The numerical analysis shows also that 
the solution agrees well with the experimental points. 

6. Approximate method 
While a solution exact up to any desired precision may be computed by the 

iterative method, it is possible to devise approximate solutions which give good 
agreement with the experiments. 

Beginning with a sphere, we may compute curve 1 as in the last section. Once 
we obtain curve 1 ,  we may try to compute the new pressure correction not with 
curve 1 but with a curve close to it. Hence we may choose a shape for which a 
closed form analytic solution of equation ( 8 )  is known. Many such solutions can 
be constructed easily. Two are found to be of interest in the present problem. 
If the shape is the ellipsoid of revolution with major axis a and minor axis b,  it  is 
easy to verify that the solution of equation ( 8 )  satisfying @ = 0 at the wall is 

Ar2 22 

II. = 8 / a 2 + Z , b Z b + F - l ] .  

If an onion shape is desired, another solution may be helpful, 
Ar2 

[r2(za + 1)  - @z(z - b ) 7 .  ' = 8 + 16ab/3 ( 1 4 )  

It is found in general that ellipsoids are better for high velocities when gravity 
effects are small. Onion shapes are more appropriate for low velocity when points 
below the equator are quite unsymmetric of those above. 

~~ ~~ 

Tom 0.3 0.6 0.9 1.2 1.5 0.810 
c, 0.08 0.31 0.63 0.96 1.15 1.16 

TABLE 4. Pressure correction for ellipse 
a = 1.81 cm A = 1023 6 = 1.07 cm, 

In  both cases there are still two parameters a and b which may be assigned 
arbitrmily. For example, let us consider again curve 1 and approximate it by 
an ellipse having the same diameter and same radius of curvature at the equator. 
We can repeat the integration procedure with the ellipse, analytically. 
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From equation (13) one can show easily that 

where V ,  is the air speed at the equator with 

V,  = &b2A/(4b2 + ~ 2 )  

and 

Equation (9) can be integrated at once to give A (or V,) 
k2 = (as - b2)/as. 

with standard notations for elliptic integrals (Jahnke & Emde 1945). To derive 
(16), we took v = ve, the error in doing so is negligible. 

Table 4 gives the pressure coefficient C, at the meridian computed for the 
ellipse. Using those values in (1)  we obtain by numerical integration it new curve 
which agrees with curve 3,  within 2 %. 

In  figure 2 we aIso draw the inflated shape obtained by neglecting the pressure 
correction altogether in (1). Instead of starting with a sphere one could have 
used this curve for initial shape. Using only the approximate method (with an 
ellipse) for simplicity, we obtain a curve which agrees with curve 2, within 2 %. 
Only one iteration is needed here, again this was expected since the inflated shape 
is roughly similar to the final one. The approximate method predicts the proper 
shape and is quite easy to apply since no numerical solutions of (8) and (9) are 
needed. 

7. Further comparisons with experiments and conclusions 
Three other experiments of Goring (1959) (Expts. 1, 3 , 5 )  are also available to 

check our theory. The magnitude and direction of the water velocity leaving the 
disk are indicated for each experiment in figures 4, 5, 6. The largest effect due to 
internal air motion occurs when the water velocity has its highest value. This is 
the case of Expt. 2 which we considered earlier with some detail as it provides the 
most crucial test of our theory. The iterative procedure is easily repeated for 
Expts. 1, 3, 5 and the results are represented in figures 4, 5, 6. The dots are the 
experimental points; curve 2 again represents the final theoretical result; the 
inflated shape is obtained by neglecting the pressure correction. Convergence and 
precision are those found in the case of Expt. 2. .We obtain similar results by 
using the approximate method. 

In  conclusion we find that our theory, whether numerical and exact or partly 
analytical and approximate, agrees well with the experiments. Previous investi- 
gators who used the water-bell experiment neglected the air motionin the cavity. 
Comparing the inflated shape with the actual shape gives the error of that 
omission (which naturally is highest for Expt. 2). 

After completion of the manuscript our attention was brought to papers by 
O’Brien (1961) and Burggraf (1966) which have some bearing on the present 
problem. 



A theory of water-bells 

1 

N 

FIGURE 4. Comparison with Expt. 1. 0, experimental points 
sin #1 = 0.970; w1 = 337 cmjsec. 
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FIGURE 5. Cornparison with Expt. 3. 0, experimental points. 
sin dl = 0.964; v1 = 374 cmisec. 
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FIGURE 6 .  Comparison with Expt. 5. 0,  experimental points. 
sin = 0,844; w1 = 283 cmjsec. 
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Appendix 
Between the wall and the outer edge of the vortex there is a boundary layer. 

Its study will show how to relate, in general, w(s) and A .  Using the von Mises 
equation, Wood (1957) determined such a relation for the two-dimensional case. 
We shall operate in a similar manner for the axisymmetric case. Inside the 
boundary layer, we have 

Integrating this equation over any streamline inside the boundary layer, we 
obtain 

One part of the streamline lies on the axis where r = 0 and another under the 
disk where Y N 0,  hence, both parts contribute nothing to the integral. Only the 
portion of the streamline next to the water sheet (outside the disk) has to be 
considered and there the veIocity V should be rather close to the water velocity 
v(s).  Then, let us assume that 

V = v(s)i-  7, with I < Iw(s)J. 
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We can linearize the integral and keeping only the first-order term, write: 

which can also be written 

In doing so, we neglected a term (aL/a$) r2v(s)z (a V/a$) ; one checks easily from its 
order of magnitude that it is negligible in the boundary layer. Then 

2-1 I 
0 Disk Equator S 

edge 
FIGURE 7. Sketch of velocities: -, water velocity (no gravity); - . ., water 

velocity (with gravity) ; -, velocity at  the outer edge of the vortex. 

the constant has to be zero, since it is the value of the integral at the outer edge 
of the vortex. Repeating the process, we get 

loL rzv(s)2 B ds = const. 

The constant in the last equation is zero (value for the streamline touching the 
water) or I L  rzv(s)z ~ d s  = JOL r2v(s)3ds. (A 1) 

0 

If we take for V the velocity at  the outer edge of the vortex V ( s ) ,  we have 

which is equation (9). If gravity is negligible then v(s) = const. and 

v(s )  is known from experiments and V ( s )  from equation (8). Then from equation 
(A 2) we get an expression for A .  Finally, figure 7 shows a typical plot for V(s)  and 
v(s)  on the meridian. Obviously, the assumption of linearity is appropriate. 

24-2 
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